Circulife

亜臨界水を用いる柑橘果皮からのファイバー回収

160年続く石油化学社会を変える

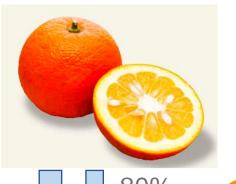
アパレルを天然素材産業へ転換

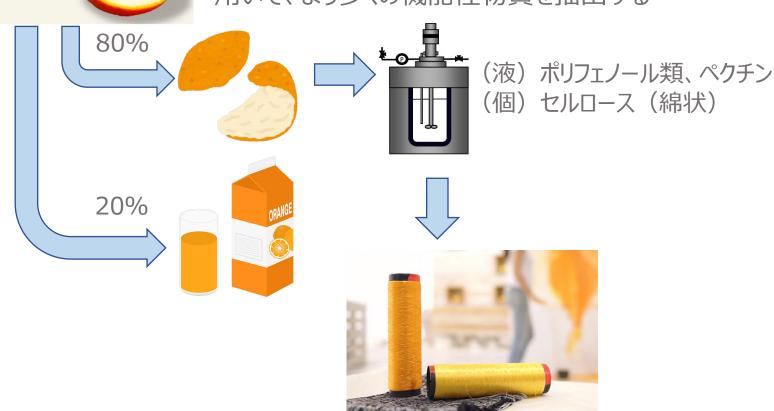
- ・天然繊維事業
 木糸・シルク
- ・天然染料事業 高機能草木染め染料・インクジェット染色

繊維素材

日本の主な繊維原料の輸入率

(出典: (公財) 日本海事広報協会「SHIPPING NOW 2015-2016」より作成)


木糸の特徴


糸では50%、生地では約25%を 日本の資源を原料として製造でき、 環境負荷の低減に繋がる

柑橘果皮からのセルロース抽出

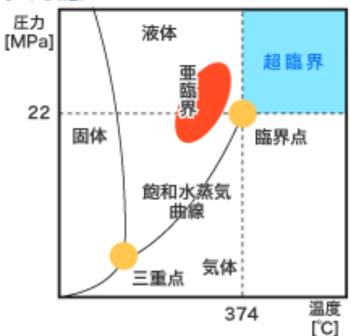
熊本大学と共同研究 多量に破棄され有価物も多い果皮から、 環境負荷低減に寄与する**亜臨界抽出法**を 用いて、より多くの機能性物質を抽出する

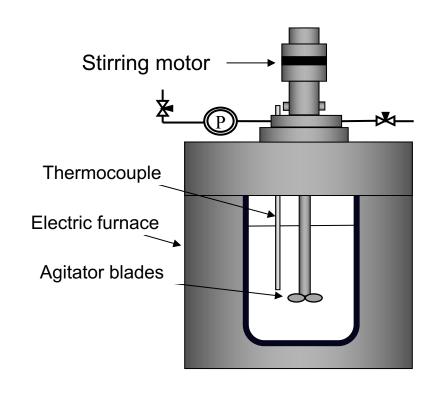
天然繊維の製造比較

原料	い草	間伐材(木糸)	柑橘系果皮
繊維抽出方法	地球釜でNaOHを 使用	地球釜でNaOHを 使用	亜臨界処理
繊維抽出時の温度	160℃	160℃	140℃
繊維抽出時の時間	5時間	5時間	1時間
繊維の質	太くて短い	細くて長い	細くて長い
和紙(糸)の配合率	20%	50%	50%予定
生地の配合率	10%	25%	25%予定

抽出方法:回分式(タンク型)

1段処理

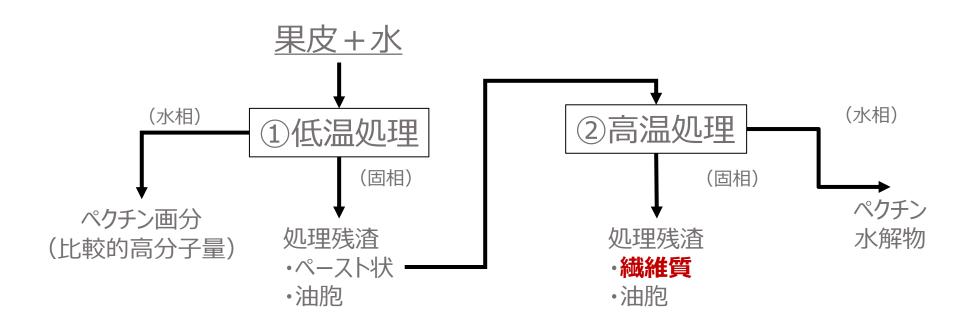

装置形態: タンク式


反応温度: 140~160℃

反応時間: 20~30分程度

その他条件: 攪拌翼の形状・枚数、攪拌速度も外果皮の処理には有効

水の状態




抽出方法:半流通式(タンク型、管型)

2段処理(半流通式)

- ① 低温処理:140°C程度、滞留時間10~30分程度 ねらい:ペクチンを剥がし取る(分子量分布は大きいペクチン画分を捕集)
- ② 高温処理:150~160°C、滞留時間数十秒~数分程度 ねらい:外果皮の破砕、残存ペクチンの加水分解による分離・溶出

今後の展開

未利用バイオマスの未来

「環境(Environment)」=CO2削減、廃水問題改善

「社会(Society)」=ゴミゼロの社会

「経済(Economy)」=コスト削減による利益率の改善

の好循環を生み出す持続可能な天然素材